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Received 20 October 1981, in final form 7 May 1982 

Abstract. Three types of Hermite-Pade approximants are considered, known respectively 
as quadratic, integral and differential Pade approximants. The singularity structure of 
each type of approximant is described. It is more complicated than that of the standard 
Pad6 approximant, and this property may often be used to estimate the types of singularity 
of a function from its power series expansion, as well as evaluate it on its branch cuts. 

Two applications in different fields are described which illustrate these properties of 
the above types of Hermite-Pade approximants. The first concerns the characteristic 
values of Mathieu’s equation which are related to the energy eigenvalues of the harmonic 
oscillator on a lattice. The second concerns the investigation of the singularity structure 
and values of various physical quantities associated with periodic and solitary water waves. 

1. Introduction 

The Pad6 approximant has proved a useful tool in many branches of physics and 
applied mathematics for the summing of perturbation series which converge slowly 
or even diverge. The reason why Pad6 approximants can be used when straightforward 
series summation breaks down is that the former, being rational functions, have poles 
which can mimic the singularities of the function being approximated. However, on 
or close to the singularities of the original function the Pad6 approximants no longer 
converge unless these singularities are of the same type as those of the approximant, 
i.e. simple poles. It is therefore desirable to use generalisations of Pad6 approximants 
with more general types of singularities. 

In this work we shall consider applications of three such generalisations. The first, 
quadratic Pade approximants, are defined by Shafer (1974) where the approximants 
are solutions of a quadratic equation and have square root branch cuts. The two 
other generalisations are defined by constructing from the original series differential 
equations whose solutions are taken to approximate the original function (Guttman 
and Joyce 1972, Gammel 1973). We will consider here two cases, the first being 
when the differential equation is a linear second-order homogeneous equation whose 
solutions are called differential Pade approximants. The second case is when the 
differential equation is an inhomogeneous first-order equation whose solution is called 
an integral Pad6 approximant. The singularities of these approximants are in general 
branch cuts. In 0 2 we give precise definitions for these types of approximants, which 
are included in a wider class of approximants introduced originally by Hermite (1893) 
and Pad6 (1894) and termed Hermite-Pad6 approximants by Della Dora and Di 
Crescenzo (1979). We also describe briefly their singularity structure. 

0305-4470/82/123665 + 13$02.00 @ 1982 The Institute of Physics 3665 
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In this work we present applications in two fields which demonstrate the power 
of these approximations to continue an analytic function up to and even onto its 
singularities and also to determine the position and type of these singularities. The 
first concerns the simple harmonic oscillator in one-dimensional space when this space 
is latticised. It has been shown by Jurkiewicz and Woseik (1978) that the energy 
eigenvalues are closely related to the characteristic numbers a,(z), b , ( z ) ,  r = 0,1,  . . . , 
of Mathieu's equation (we use the same notation as Abramowitz and Stegun (1968)). 
Here the independent variable z is proportional to the inverse lattice spacing and 
the continuum limit is obtained by taking z + 00. 

The above system has been used as a testing ground for methods to be used in a 
space-time lattice treatment of non-Abelian theories by many authors, including 
Carroll et a1 (1977), Jurkiewicz and Woseik (1978) and Hamer (1979). They were 
interested in determining from the power series for a,(z) ,  b , ( z )  their limiting behaviour 
as z + CO. The type of limiting behaviour was assumed and ordinary Pad6 approximants 
were used to determine the strength. In 8 3 we will use differential and integral Pad6 
approximants to study the problem, and we find that in the case of b l ( z )  it is possible 
to determine the type and strength of the singular behaviour as z + CO. For other 
characteristic numbers it seems more difficult to determine the type of singularity, 
but when this is given one can often estimate the strength. Our results compare 
favourably with those given by the above authors. 

The singularities of a,(z) and b , ( z )  for finite z have been studied by Hunter and 
Guerrieri (1981) and found to be of square root type. They show that for instance 
a o ( z )  and a 2 ( z )  have a common square root branch point at z = z o  = -1.468 786i, 
confirming earlier work of Mullholland and Goldstein (1929). We confirm these 
results using differential and integral Pad6 approximants to the power series of u ~ ( z ) .  
Not only that, when we evaluate quadratic Pad6 approximants to this series, we find 
that one branch of the approximant gives the values for az(z) whilst the other branch 
gives a&) for values of z in a large region of the complex plane including the cut. 
This demonstrates the ability of this type of approximant to continue an analytic 
function from one Riemann sheet to another sheet. 

The second field of application which we discuss in 8 4 is the study of water waves. 
Early work on this subject by Stokes (1847) used perturbation expansions in a 
parameter varying monotonically with the wave height/length ratio. However, as 
demonstrated by Schwartz (1974), they fail to converge for steep waves, and to 
compute the wave profiles in this case he used Pad6 approximants to sum the 
perturbation series. 

In his original work, Stokes (1880) demonstrated that the highest water wave, 
assumed to be sharp crested, would have an included angle of 120" at the crest. This 
corresponds to a cube root singularity in the fluid velocity q as a function of the 
velocity potential x = 4 + i4. However, for waves of less than maximum height, Grant 
(1973) has shown generally that the singularities of q must be square branch points. 
Schwartz (1974) studied numerically the leading singularity in q as the wave height 
is increased to its maximum value and obtained results in agreement with the above 
predictions. He used a method introduced by Domb and Sykes (1957) to determine 
the singular behaviour of q from its power series in x. In 8 4  we will repeat this 
investigation using differential Pad6 approximants, and we again find that they are 
successful in finding both the position and type of singularity of q. 

The above work was concerned with periodic waves, but progress has also been 
made recently in the understanding of solitary waves, and in particular Longuet- 
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Higgins and Fenton (1974) have shown that the speed, mass, momentum and energy 
of the wave attain maximum values for waves of less than maximum amplitude. As 
a consequence, there can exist for a given wave speed F near its maximum value two 
quite distinct solitary waves. so that when the mass M of the wave is plotted against 
y = F  - 1, a curve is obtained which turns back on itself. Although they had been 
able to construct a series for M in powers of y, the partial sums of this series and 
Pad6 approximants to it could not give the whole curve as they only give single-valued 
approximations to M. We will demonstrate in 0 4 that quadratic Pad6 approximants 
to M, being double valued, do approximate well both values for M. 

We end this work by summarising our results in § 5 and suggesting further fields 
of application of the generalisations to Pad6 approximations considered here. 

2 

2. Hermite-Pad6 approximants 

We introduce the three types of Hermite-Pad6 approximants used in this work and 
summarise their singularity structure. 

(i) Quadratic Pad6 approximants to a function f ( z )  are defined by constructing 
polynomials P ( z ) ,  Q(z), R ( z )  that formally satisfy 

P(0)  = 1, (2. la ,  b )  

where p ,  q, r are the degrees of the respective polynomials. The corresponding 
approximants fA(z)  to f ( z )  are the solutions of the equation obtained from ( 2 . 1 ~ )  by 
replacing the RHS by zero, so that 

P ( z ) f Z ( z )  + Q ( z ) f ( z )  + R ( z )  = O ( Z ~ + ~ + ' + ~  ), 

~ A ( z )  ~ f s ; , ~ ( ~ )  = {-O(~)*[Q*(Z)-~P(Z)R(~)~'~~}/~, (2.2) 

and this type of approximant therefore has square root branch parts. 
(ii) Integral Pad6 approximants are similarly defined by requiring the polynomials 

P ( z ) ,  Q(z) ,  R ( z )  to satisfy 

P ( z )  df(z)/dz + Q ( z ) f ( z ) + R ( z )  = O ( Z ~ + ~ ~ ~ ~ ~  ), (2.3a, b )  

Replacing the RHS of ( 2 . 3 ~ )  by zero, the corresponding solution is the integral 
approximant (Baker and Hunter 1979) 

P(0)  = 1. 

When f (z )  is a real function of z as considered here, 

where n ,  is the number of real roots, n ,  is the number of conjugate pairs of roots and 
gi, si are real. It is well known that fp,q,r(z) has singularities at the zeros of P ( z )  and, 
for example, as z + -s i  

f p / q  ; r ( z  1 A I ( Z  + S j ) - ' I *  (2.6) 
In our applications we shall study the behaviour of f ( z )  as z +CO by investigating 

the corresponding behaviour for ~ A ( z ) ,  and find it convenient to consider the 
approximants with q = p  - 1. We also assume that P ( z )  has no zeros on the positive 
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axis so that si > 0; j = 1, . , , , n,. It is straightforward to show on substituting (2.5) in 
(2.4) that as z +CO 

(2.7) 
- C;l1 g, +l I;:, Re Y,  

f p / q ; , ( ~ )  =A22 

so long as the expression in square brackets on the RHS of (2.4) tends to a finite limit, 
and the constant A 2  may be determined. In the example considered in 9 3, f ( z )  = 
O(z 'I2) as z + 03, so that we expect 

n. n. 2 g j + 2  f R e y j = - i  
j = l  j = l  

if the asymptotic behaviour of f A ( z )  as given by (2.7) is to approximate closely that 
of f ( z ) .  The integral in square brackets on the RHS of (2.4) will then tend to a finite 
limit as z +CO if p - r 3 1, and in our applications we take p = r 1 2 .  

We will also use forced approximants (Baker and Hunter 1979, Fisher and Au-Yang 
1979). In that case the exponent of z in (2.7) is forced to have a given value by 
requiring the coefficients of the polynomials P ( z )  and Q ( z )  to satisfy a further linear 
relation which may be used to replace that in the defining relation ( 2 . 3 ~ ~ )  obtained 
by equating coefficients of z ~ + ~ + ~ + ~  . This further relation is obtained from (2.5) by 
letting z + 03, remembering that q = p - 1. 

P(z)d2f/dz2+ Q(z)df/dz +R (z)f(z)  = 1 9  P ( 0 )  = 1. (2.9a, 6 )  

The differential approximant ~ A ( z )  is then the solution of 

(iii) Finally, differential Pade approximants are defined by requiring 

P ( z  )d2fA/dz ' + Q ( z  ) dfA/dz + R ( z  )f~( z ) = 0 ,  (2.10) 

From standard theory, the singularities of ~ A ( z )  are at the zeros of P ( z )  and their 
strength may be determined in the usual way. Forced approximants with specified 
singularities may again be defined (Fisher and Au-Yang 1979), and as above the extra 
requirements are linear relations between the coefficients of P ( z ) ,  Q ( z )  and R ( z ) .  

one may, following any standard text 
(e.g. Brauer and Nohel 1967), change the variable y = 1/z  in (2.10) which then 
becomes 

To study the behaviour of f A ( z )  as z 

y 'd2f A/dy + Y wi ( y df A/dy + wz( Y )fA( 1 / Y  = 0 ,  (2.11) 

W i ( y ) = 2 - ~  Q ( z ) / P ( z )  W 2 ( y ) = z 2 R ( z ) / P ( z ) .  (2.12) 

where 

We require z = o;, to be a regular singular point of ~ A ( z ) ,  i.e. W,( y )  to be analytic at 
y = 0. This condition is satisfied if p zq + 1, p s r  + 2, and in 9 3 we will use 
approximants where these are equalities. Then (2.11) has solutions 

(2.13) 

where h i  are the roots of 

A [ A  - 1 + w,(O)]+ W2(0) = 0 (2.14) 

and the coefficients di,k are obtained for k > 0 from recurrence relations involving the 
expansion coefficients of the Wi( y )  about y = 0. As previously, forced approximations 
may be defined where the hi have prescribed values. 
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3. The harmonic oscillator on a lattice 

In a quantum mechanical treatment of a simple harmonic oscillator corresponding to 
the motion of a particle along the x axis, units may be chosen such that the Hamiltonian 
operator 

H = i ( p 2  + X 2, 

where x is the coordinate of the particle and p its 
coordinate space may be made discrete by taking the 
n = 0, f 1, f 2, . . . . It has been shown by Jurkiewicz 
eigenvalues of W = 2H/12 are 

wi,l(z) = 22 +62i+l (~) ,  
i=O,  1 , 2  , . . . ,  

wi ,2 (~ )=22  +az i+ l ( z ) ,  

(3.1) 

conjugate momentum. The 
lattice of points x = nl with 
and Woseik (1978) that the 

where a,(z), b,(z j are the characteristic values of Mathieu’s equation and z = 1/(414). 
In the continuum limit 1 + 0, i.e. z + cx), the corresponding eigenvalues of H are 

(3.3a) 

(3.36) 

and this of course agrees with the continuum theory. 
The analogue to z in quantum lattice field theory is used as a perturbation expansion 

parameter in expressions for physical quantities, so that to obtain the continuum 
values for these quantities one has to determine their limiting behaviour as z +CO 

from their power series expansion in z .  Mathematical techniques for doing this have 
been tested, using the above harmonic oscillator model, by seeing how well they 
determine the limiting behaviour (3.7) for W ~ , ~ ( Z ) ,  wi,& j from known power series 
expansion for these characteristic values. 

Obviously Pad6 approximants to w&) ( j  = 0, 1) cannot be constructed which 
have the limiting behaviour (3,3), but Hamer (1979) considers the related functions 

g ( Z )  = {d[w~j (z ) ] /d~}”~ .  (3:4) 

These have the limiting behaviour 

g(z)+2(2 i  +3),  j =  1, 
j = 0,  + 2(2i + l), (3.5) 

as z + 03. He then constructed the Pad6 approximations gNIN(z) and tested whether 
or not they had the above limiting behaviour. He found that for the ground state 
(corresponding to values i = 0, j = 1 j, the asymptotic values of the approximants were 
in reasonable but not perfect agreement with the exact value as demonstrated in table 
1, but for excited states the Pad6 estimates were entirely useless. For these excited 
states, better results were obtained by matching the Pad6 approximant to the 
asymptotic behaviour at finite values {zN} ,  which approach infinity only as N+co 
(Carroll et a1 1977, Jurkiewicz and Woseik 1978). 

As described in 0 2, we can estimate the asymptotic behaviour 

f ( z ) =  Wi,j(Z)=yZ*, (3.6) 
using differential Pad6 approximants f Z 4 l r ( z ) ,  where to ensure that z = 00 is a regular 
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Table 1. Values of Pad6 approximants to  g ( z ) = ( d  w?."(z)/dz)"* as z + W .  

1imz+,gwN(z1 1.665 2.112 1.967 1.996 2.00 

singular point of the corresponding differential equation (2. lo ) ,  we have considered 
the cases when p = q + 1 = r + 2. The results for the ground state are again reasonable, 
being presented in table 2(a),  but as above for the excited states the results are useless. 
In a sense, our method is better than the previous one since it estimates the value 
A = i  for the power behaviour whilst above this value is assumed. By using forced 
differential Pad6 approximants we can arrange for fF,q , r (z )  to have the asymptotic 
behaviour (3.6) with A = exactly. The corresponding estimates for y are presented 
in table 2 ( b ) .  There is again good convergence for the ground state, but in this case 
we also get estimates within at least 1O0/o-2O% of the correct answer for the excited 
states. Remember that to determine y, we have to determine the overall normalisation 
of f E q , r ( z ) ,  and this was done by summing the series in powers of z to the original 
function f ( z )  using ordinary Pad6 approximants, and equating the result at some 
intermediate value z = z o  to f A ( z )  computed in the same way from the series (2.14) 
in inverse powers of z .  We were usually able to find such a value of z where both 
series could be summed to a good approximation. Where it was not possible, a blank 
entry has been left in table 2(b). 

Similar results were obtained using integral Pad6 approximants, except that we 
were unable to obtain useful results for wi,,,(z) even if we used forced integral 
approximants. The results are presented in tables 3(a, b )  where no entry indicates 
that the approximant had a pole on the positive real axis, so that we could not use 
(2.4) to determine the behaviour of the approximant as z + 00 in a simple way. 

Table 2. (a )  Singular behaviour of differential approximants f:q:,(~) to W , , ~ ( Z )  of the 
form yz* as z-co. (6) Values of y for forced differential approximants to w,,,(z) for 
i , j = O , l .  

( a  1 

p l q l r  21110 31211 4/31? 51413 61514 71615 Exact 

Y 49.227 2.226 1.907 2.0057 2.0082 1.9957 2.0 

h 0.6328 0.4506 0.4592 0.4960 0.4966 0.4971 0.5 

( b )  

p l q l r  b 1 + 2 ~  b3 + 22 a1+22 a 3 + 2 z  

21110 2.002 6.093 6.239 8.847 
31211 3.165 8.879 6.578 - 
41312 1.388 10.009 5.860 4.962 
51413 1.977 9.888 4.982 13.576 
61514 2.030 - 4.080 13.144 
71615 1.978 9.233 5.028 15.294 
Exact 2 10 6 14 
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Table 3 . ( a )  Singular behaviour of integral approximants fi ,q,r to wi,o(z)  of the form y z A  
as z + W. (b) Values of y for forced integral approximants to w , , , ( z )  for i = 0, 1. 

(a  1 

Y 1.24 1 1.895 1.804 - 1.862 - 2.0 
A 0.6254 0.5100 0.5207 0.2666 0.5126 0.5127 0.500 

1.849 10.14 
- 

21110 
31211 1.978 
41312 1.978 8.707 
51413 1.980 9.537 
61514 1.992 10.17 
7 /6 /5  - 10.06 
Exact 2.0 10.0 

As stated in the introduction, we have constructed differential and integral 
approximants to a2(z)  from its power series in z 2  (McLachlan 1947). As we vary the 
degrees of the polynomials P ( z ) ,  Q ( z )  and R ( z )  the number, position and type of 
the singularities of each approximant will vary. However, we find that all have 
singularity close to z 2  = z i  = -1.468 76862 and of approximately square root type, 
the results being presented in table 4. 

Since the branch point is of square root type, we would expect quadratic 
approximants to work well in this case. We have therefore computed these 
approximants to a2(z) /4  from its power series in z2. The results for z’, s z 2  < 0 are 
given in table 5 ( a )  and for z’<zi table 5 ( b )  where they compared with the values 

Table 4. The most stable singularity of differential and integral approximants to a 2 ( z )  of 
type ( z 2 - - z ~ ) * ,  

Differential approximant Integral approximant 
p l d r  2 :  A 2 :  A 

1IOlO -2.153 9047 0.498 86 -2.384 8084 0.368 19 
11111 -2.158 3777 0.496 5 1 -2.166 4156 0.479 101 
11212 -2.157 3141 0.499 80 -2.156 7378 0.502 52 
11313 -2.157 2786 0.500 03 -2.157 2335 0.500 39 
21111 -2.157 3288 0.499 57 -2.158 5665 0.495 97 

-2.157 3802 0.499 40 21212 -2.157 2849 0.499 98 
21313 -2.157 2827 0.499 98 -2.157 2782 0.500 03 
31111 -2.157 3352 0.499 67 -2.157 5632 0.498 65 

0.499 98 
41111 -2.157 2738 0.500 05 -2.157 3606 0.499 54 
41212 -2.157 2810 0.500 00 -2.157 2800 0.500 01 

31212 -2.157 2806 0.500 00 -2.157 2839 

Exact -2.157 2812 
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Table 5. ( a )  Quadratic Pad6 approximants to f (z2)=a2(z)  compared when z i < z 2 ~ 0  with 
values for a 2 ( z )  and a&)  computed by Mullholland and Goldstein (!929). (6) Quadratic 
Pade approximants to f (z2)=az(z)  compared when z 2 < z g  with values for a2(z)  computed 
by Mullholland and Goldstein (1929). 

( a ,  

-0.0256 

-0.1024 

-0.2304 

-0.4096 

-0.6400 

-0.9216 

- 1.12544 

- 1.6384 

-2.0736 

0.044 030 
0.997 324 
0.052 756 
0.989 185 
0.067 696 
0.975 226 

0.089 530 
0.954 772 
0.119 426 
0.926 663 
0.159 423 
0.888 867 
0.213 441 
0.837 477 
0.290 933 
0.763 052 
0.439 797 
0.617 711 

0.003 565 
0.997 324 
0.013 285 
0.989 185 
0.029 877 
0.975 226 

0.054 011 
0.954 772 
0.086 844 
0.926 663 
0.130 399 
0.888 869 
0.188 569 
0.837 489 
0.270 712 
0.763 155 
0.422 324 
0.620 329 

f%,,(z) 
f % / 3  (2 )  

0.003 218 
0.997 324 
0.012 955 
0.989 185 
0.029 574 
0.975 226 

0.053 746 
0.954 772 
0.086 623 
0.926 663 
0.130 226 
0.888 869 
0.188 446 
0.837 489 
0.270 637 
0.763 155 
0.422 321 
0.620 331 

a d z  ) /4  
a ~ ( z ) / 4  

0.003 209 
0.997 324 
0.012 947 
0.989 185 
0.029 567 
0.975 226 

0.053 740 
0.954 772 
0.086 618 
0.926 663 
0.130 223 
0.888 869 
0.188 444 
0.837 489 
0.270 636 
0.763 155 
0.422 320 
0.620 331 

-2.56 0.530 753 

-10.24 0.567 197 
-1.016 848 

-23.04 0.659 073 
-1.874 056 

-40.96 0.967 051 
-3.419 906 

-64.00 - 

-0.215 243 

~ ~~ 

0.526 247 

0.600 202 

0.704 205 

0.795 126 

0.805 949 

-0.217 455 

-0.992 528 

-1.633 420 

-2.261 885 

-2.226 812 

0.526 248 

0.599 822 
-0.217 463 

-0.992 7926 
0.705 638 

-1.641 590 
0.833 487 

-2.317 690 
1.046 511 

-3.073 079 

0.526 248 
-0.217 463 

0.599 837 

0.705 302 

0.821 211 

0.931 317 

-0.992 788 

-1.640 667 

-2.306 374 

-2.995 455 

given by Mullholland and Goldstein (1929). It is interesting to see that they not only 
converge well for points right up to the branch point but also converge on the branch 
cut itself. However, it is even more interesting, when we consider the other branch 
of the quadratic approximant, to see that it gives very good estimates for u o ( t ) / 4  for 
these same values of z 2 ,  demonstrating that ao(z)  and u2(2) are two branches of the 
same analytic function. 
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4. Singularities of water waves 

We first of all consider periodic waves and use the same notation as Longuet-Higgins 
(1978), so that we consider waves in water of infinite depth moving with velocity c 
and wavelength L. The motion is two dimensional and we take the coordinate frame 
Oxy with Oy vertically upwards and Ox horizontal such that the waves are moving in 
the positive x direction. The frame is assumed to be moving with the waves such that 
the peak of a particular wave is always at x = 0. Units are chosen such that the 
acceleration due to gravity g = 1 and L = 27~. The velocity potential w is a function 
of z = x + iy  and is such that the velocity of the fluid at (x, y )  is 4 = dwldz. 

If w ( z )  = q5 +i$ where q5 and (I, are real functions of (x, y ) ,  then we may make 
the expansions 

x = q5/c +Hie*" sin C$/C f H2e2*lc sin 24/c + . . . , 

y = $ /e  + iHo + Hie*" COS q5/c + H2e2*IC cos 24/c  -tu . . . 
(4.1) 

The Hi are constants which have been determined by Longuet-Higgins (1978) from 
cubic relations corresponding to the condition of constant pressure at the surface of 
the water ($ = 0). He has kindly provided us with copies of his computer programs 
to determine these constants for waves of differing height. 

If we define 5 = ew'ic, then from (4.1) 

- dz -c-- dz 'd5 -1+H15+2H252+ . . . .  
4 dw dwldb (4.2) 

From the power series on the right we can construct differential Pad6 approximants 
and so estimate the singularities of q, As mentioned in the introduction, Stokes (1880) 
showed that the highest wave has a sharp crest with included angle of 120", and this 
corresponds to a cube root singularity in 4 at the crest. For waves of less than 
maximum height all singularities of 4 are of square root type, and are outside the 
water, as proved by Grant (1973) and shown explicitly through numerical evaluation 
by Schwartz (1974). In  particular, from figure 10 of this latter work, it can be seen 
that the leading singularity for waves of roughly $ maximum height is indeed of square 
root type, but as the wave height is increased still further, the square root branch 
points combine to give an effective leading singularity which tends to cube root type 
as the maximum height is reached. 

We present our estimates for the behaviour 

4 = 0[(5 - 
of this effective singularity using a sequence of differential Pad6 approximants in table 
6, for wave heights up to the maximum value of 0.886. We have compared them 
where applicable with the corresponding values given in figure 10 of Schwartz (1974), 
where the abscissa A I L  is (1127~) x wave height. These latter values were obtained 
using the method introduced by Domb and Sykes (1957) to analyse the singular 
behaviour of an analytic function from its power series. 

It will be seen that the differential Pad6 approximants predict the leading singularity 
to be of the square root type almost up to the maximum height. The predicted 
positions of the singularity are stable and agree with the results of Schwartz quoted 
in table 6, when inherent inaccuracies in taking them from a figure in his paper are 
taken into account. 
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Table 6. Leading singularity [=io of q and corresponding exponent A for waves of various 
heights as estimated using differential Pade approximants and compared with the predic- 
tions of Schwartz (1974). 

0.6283 A 
i o  

0.8168 A 
i o  

0.84 A 
i o  

0.85 A 
i o  

0.86 A 
i o  

0.87 A 
LO 

0.88 A 
i o  

0.886 A 
i o  

0.886 A 
Forced i o  

21212 

0.502 92 
1.280 64 
0.464 35 
1.048 36 
0.455 75 
1.028 67 
0.448 32 
1.020 66 
0.436 12 
1.013 02 
0.415 04 
1.005 89 
0.338 97 
0.999 18 
0.325 83 
0.998 86 
0.332 10 
1.000 0 

31313 41414 

0.499 97 0.499 94 
1.280 47 1.280 47 
0.493 58 0.499 06 
1.048 96 1.0490 4 
0.485 726 0.501 90 
1.029 30 1.029 49 
0.396 89 0.511 38 
1.020 23 1.021 75 
0.436 49 0.432 46 
1.013 17 1.013 30 
0.40625 - 

0.392 32 0.334 06 
1.111 20 0.999 12 
0.350 02 0.310 50 
1.003 10 0.994 34 
0.333 13 0.326 70 
1.000 0 1.000 0 

1.005 53 - 

51515  

0.500 0 
1.280 47 
0.499 73 
1.049 07 
0.499 42 
1.029 45 
0.501 62 
1.021 5 5  

0.514 24 
1.014 14 
0.439 07 
1.006 39 
0.347 88 
0.999 72 
0.343 78 
1.002 09 
0.324 5 5  
1.000 0 

~- 
61616 

0.500 0 
1.280 47 
0.499 82 
1.049 07 
0.499 05 
1.029 45 
0.497 24 
1.021 50 
0.487 69 
1.013 87 
0.438 89 
1.006 39 

-~ 

- 
- 

0.336 96 
1.001 37 
0.334 41 
1.000 0 

71717 

0.500 0 
1.280 47 
0.499 95 
1.049 07 
0.499 40 
1.029 45 
0.501 77 
1.021 54 
0.488 63 
1.013 88 
0.458 64 
1.006 66 
0.344 30 
1.000 01 
0.319 74 
0.999 35 
0.325 63 
1.000 0 

Schwartz 

0.489 
1.25 
0.42 
1.05 

0.3333 
1.0000 

However, it is interesting to see that the transition from a square root to a cube 
root singularity as the wave height reaches its maximum is much more abrupt when 
differential approximants are used compared with when the Domb-Sykes method is 
used. The estimates for the degree A of the singularity do tend to become unstable 
close to the highest wave, but this is probably due to the fact that the accuracy of 
determination of the coefficients {Hi} deteriorates in this situation. In the final two 
rows of table 6 we give estimates for the values of A for the highest wave using forced 
differential approximants, and we find that they are more stable than in the unforced 
case. 

Important advances have also been made recently in the understanding of solitary 
water waves. For instance, it has been shown by Longuet-Higgins and Fenton (1974) 
that for a given wave speed c, there can exist when c is near its maximum two quite 
distinct solitary waves. In the notation of the above authors, we consider a solitary 
water wave of arbitrary amplitude a, propagating with velocity c in water of 
undisturbed depth h_Units are chosen so that g = h = 1, and then the Froude number 
of the wave F = c / J g h  = c. Power series expansions for quantities of physical interest 
were derived in terms of y = F2 - 1. For example, 

(4.3) 

where M is the excess mass of the wave and E = u / h .  The coefficients {U"} ,  {c,} are 
given in table 2 of their paper for 0 n G 14. It was not found possible to compute 
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completely M and E as functions of y from the above expansions for reasons we will 
see shortly. However, M,  E and y can be computed as functions of w = 1 - u 2 / g h  
where U is the velocity of the water at the wave crest (in the frame of reference 
moving with the wave speed). The authors plotted for example M against y in their 
figure 2 which we reproduce in our figure 1. It is then obvious why the partial sums 
of the series (4.3) for M or even Pad6 approximants to this series (we plot the 515  
and 6/6 Pad6 approximant on our figure 1) cannot give M completely since it becomes 
a double-valued function of y for y 2 0.653. 

Y 

Figure 1. Estimates for M as a function of y given by quadratic Pade approximants and 
Pad6 approximants compared with the exact values computed by Longuet-Higgins and 
Fenton (1974), and indicated by open circles. 

It would therefore seem appropriate to try to evaluate M from the series (4.3) by 
using double-valued approximants. We have a particular example at- hand which is 
of course quadratic Pad6 approximants. In figure 1 we compare the 3/3/3 and 41414 
quadratic Pad6 approximants to M as a function of y with the exact value and the 
values of the 5 / 5  and 6/6 Pad6 approximants. For y 3 0.653 the positive branch of 
each quadratic approximant gives the greater of the two estimates for M, whilst the 
negative branch gives the smaller value. Also in table 7 we compare our estimates 
for M at various values of y with those of table 5 of the above paper. The values in 
the upper half of our table correspond to the larger value of M for a given y, and in 
the lower half to the smaller value of M. We see that the quadratic approximants are 
converging very well for the upper branch, but also quite well for the lower branch. 

For y 3 0.674 our quadratic approximants become complex conjugates of one 
another, and this would suggest that M has a square root branch point at y =0.674 
in conflict with the conclusions of the above authors who, using the Domb-Sykes 
method, estimate that the singularity is of the form M =MO +K(0.662 - y)' withp = 1, 
so that it is weak and possibly logarithmic. However, the nature of the singularity 
near the crest of steep water waves has been investigated further by Longuet-Higgins 
and Fox (1977, 1978) and Williams (1981). In particular, Fox (1977) has shown that 
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Table 7. Quadratic approximants to the excess mass M as a function of y compared with 
the exact values as computed by Longuet-Higgins and Fenton (1974). 

Y 31313 41414 M 

0.60166 1.993 1.992 1.992 
0.6286 2.021 2.020 2.020 
0.6506 2.036 2.034 2.033 
0.6665 2.039 2.035 2.030 
0.6742 2.036 2.026 2.008 

0.6711 1.854 1.938 1.964 
0.6530 1.784 1.878 1.897 

for almost highest waves, 

= yo - 2.2 1 E  COS(^. 143 log E F + 1.33) + O(E ; ) 
(4.4) 

M = MO- 3.96~; cos(2.143 log E F -  0.516) +o(E:) 

where is the ration of the crest particle velocity in the frame of reference moving 
with the wave to J2 times the wave speed. Also MO = 1.968 and yo  = 0.6664, being 
the values of M,  y for the highest wave. As demonstrated by Fox in a private 
communication subsequent to our work, y has a stationary value 0.676 when c F =  
0.1933 if higher-order terms are neglected in (4.4). Then for E F  close to this value 

y = 0 . 6 7 6 - ~ 1 ( ~ ~ - 0 . 1 9 3 3 ) ~ ,  M z  1 .985+~2(&~-0 .1933) -  1 .985+~3(0 .676-y) ”~  
(4.5) 

where K~ are constants. These estimates would therefore support our suggestion that, 
as the quadratic Pad6 approximants are appearing to converge to both branches of 
M as a function of y ,  then M has a square root branch rather than a logarithmic 
branch point as a function of y .  

5. Conclusions 

We have considered here three types of generalisations to Pad6 approximants which 
are all contained in the wider class known as Hermite-Pad6 approximants. The 
singularity structure of each type of approximant was described and it was shown how 
this structure could be forced to be of a given form. It is interesting to note that 
forcing approximants allows higher orders to be evaluated from a given number of 
coefficients of the original power series, compared with the standard case. 

In our application to the harmonic oscillator on a lattice, we have shown that the 
forced approximants give at least rough estimates to the limit of the energy levels as 
the lattice spacing tends to zero. This would suggest that our methods could be used 
to study the continuum limit of more realistic field theories, but the number of 
coefficients required to ensure convergence of corresponding approximants may be 
prohibitively difficult to evaluate. 

In our application to water waves, we have again demonstrated that the 
approximants used here can give good estimates of the singularity structure of functions 
of physical interest, and that multivalued functions may be approximated even if only 
a single power series for the function is provided. We are encouraged by this and 
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other work (Gammel 1976, Reddall 1978, Nuttall 1980 and Baumel et a1 1981) to 
suggest that there are other situations in fluid mechanics where the above approximants 
could prove useful. Possibilities that come to mind are the study of breaking waves 
and shock waves. 
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